Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 9 de 9
Фильтр
2.
Am J Respir Crit Care Med ; 208(1): 25-38, 2023 Jul 01.
Статья в английский | MEDLINE | ID: covidwho-2297287

Реферат

Rationale: Defining lung recruitability is needed for safe positive end-expiratory pressure (PEEP) selection in mechanically ventilated patients. However, there is no simple bedside method including both assessment of recruitability and risks of overdistension as well as personalized PEEP titration. Objectives: To describe the range of recruitability using electrical impedance tomography (EIT), effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP. Methods: This is the analysis of patients with coronavirus disease (COVID-19) from an ongoing multicenter prospective physiological study including patients with moderate-severe acute respiratory distress syndrome of different causes. EIT, ventilator data, hemodynamics, and arterial blood gases were obtained during PEEP titration maneuvers. EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial. Recruitability was defined as the amount of modifiable collapse when increasing PEEP from 6 to 24 cm H2O (ΔCollapse24-6). Patients were classified as low, medium, or high recruiters on the basis of tertiles of ΔCollapse24-6. Measurements and Main Results: In 108 patients with COVID-19, recruitability varied from 0.3% to 66.9% and was unrelated to acute respiratory distress syndrome severity. Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H2O for low versus medium versus high recruitability (P < 0.05). This approach assigned a different PEEP level from the highest compliance approach in 81% of patients. The protocol was well tolerated; in four patients, the PEEP level did not reach 24 cm H2O because of hemodynamic instability. Conclusions: Recruitability varies widely among patients with COVID-19. EIT allows personalizing PEEP setting as a compromise between recruitability and overdistension. Clinical trial registered with www.clinicaltrials.gov (NCT04460859).


Тема - темы
COVID-19 , Respiratory Distress Syndrome , Humans , Electric Impedance , Prospective Studies , Lung/diagnostic imaging , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed/methods , Tomography/methods
3.
J Intensive Med ; 3(1): 11-19, 2023 Jan 31.
Статья в английский | MEDLINE | ID: covidwho-2244689

Реферат

Optimal initial non-invasive management of acute hypoxemic respiratory failure (AHRF), of both coronavirus disease 2019 (COVID-19) and non-COVID-19 etiologies, has been the subject of significant discussion. Avoidance of endotracheal intubation reduces related complications, but maintenance of spontaneous breathing with intense respiratory effort may increase risks of patients' self-inflicted lung injury, leading to delayed intubation and worse clinical outcomes. High-flow nasal oxygen is currently recommended as the optimal strategy for AHRF management for its simplicity and beneficial physiological effects. Non-invasive ventilation (NIV), delivered as either pressure support or continuous positive airway pressure via interfaces like face masks and helmets, can improve oxygenation and may be associated with reduced endotracheal intubation rates. However, treatment failure is common and associated with poor outcomes. Expertise and knowledge of the specific features of each interface are necessary to fully exploit their potential benefits and minimize risks. Strict clinical and physiological monitoring is necessary during any treatment to avoid delays in endotracheal intubation and protective ventilation. In this narrative review, we analyze the physiological benefits and risks of spontaneous breathing in AHRF, and the characteristics of tools for delivering NIV. The goal herein is to provide a contemporary, evidence-based overview of this highly relevant topic.

4.
Br J Hosp Med (Lond) ; 84(1): 1-10, 2023 Jan 02.
Статья в английский | MEDLINE | ID: covidwho-2242095

Реферат

Optimisation of oxygenation strategies in patients with hypoxaemic respiratory failure is a top priority for acute care physicians, as hypoxaemic respiratory failure is one of the leading causes of admission. Various oxygenation methods range from non-invasive face masks to high flow nasal cannulae, which have advantages and disadvantages for this heterogeneous patient group. Focus has turned toward examining the benefits of non-invasive ventilation, as this was heavily researched in resource-limited settings during the COVID-19 pandemic. The oxygenation strategy should be determined on an individualised basis for patients, and with new evidence from the COVID-19 pandemic, providers may now consider placing further emphasis on non-invasive approaches. As non-invasive ventilation continues to be used in increasing frequency, new methods of monitoring patient response, including when to escalate ventilation strategy, will need to be validated.


Тема - темы
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Pandemics , COVID-19/complications , Hypoxia/etiology , Hypoxia/therapy , Respiratory Insufficiency/therapy , Noninvasive Ventilation/adverse effects , Oxygen Inhalation Therapy
5.
Curr Opin Crit Care ; 28(6): 660-666, 2022 Dec 01.
Статья в английский | MEDLINE | ID: covidwho-2152245

Реферат

PURPOSE OF REVIEW: To review the clinical problem and noninvasive treatments of hypoxemia in critically-ill patients with coronavirus disease 2019 pneumonia and describe recent advances in evidence supporting bedside decision making. RECENT FINDINGS: High-flow nasal oxygen and noninvasive ventilation, along with awake prone positioning are potentially helpful therapies for acute hypoxemic respiratory failure. High-flow nasal oxygen therapy has been widely implemented as a form of oxygen support supported by prepandemic randomized controlled trials showing possible benefit over noninvasive ventilation. Given the sheer volume of patients, noninvasive ventilation was often required, and based on a well conducted randomized controlled trial there was a developing role for helmet-interface noninvasive. Coupled with noninvasive supports, the use of awake prone positioning demonstrated physiological benefits, but randomized controlled trial data did not demonstrate clear outcome superiority. SUMMARY: The use of noninvasive oxygen strategies and our understanding of the proposed mechanisms are evolving. Variability in patient severity and physiology may dictate a personalized approach to care. High-flow nasal oxygen may be paired with awake and spontaneously breathing prone-positioning to optimize oxygen and lung mechanics but requires further insight before widely applying to clinical practice.


Тема - темы
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , COVID-19/therapy , Respiratory Insufficiency/therapy , Oxygen Inhalation Therapy , Hypoxia/therapy , Oxygen , Critical Care , Lung , Randomized Controlled Trials as Topic
6.
Ann Intensive Care ; 12(1): 94, 2022 Oct 14.
Статья в английский | MEDLINE | ID: covidwho-2108949

Реферат

INTRODUCTION: Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. MAIN RESULTS: In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet;  alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10-15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. CONCLUSIONS: Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.

8.
Ann Intensive Care ; 11(1): 107, 2021 Jul 12.
Статья в английский | MEDLINE | ID: covidwho-1322949

Реферат

Veno-venous extracorporeal membrane oxygenation (ECMO) is a helpful intervention in patients with severe refractory hypoxemia either because mechanical ventilation cannot ensure adequate oxygenation or because lung protective ventilation is not feasible. Since ECMO is a highly invasive procedure with several, potentially devastating complications and its implementation is complex and expensive, simpler and less invasive therapeutic options should be first exploited. Low tidal volume and driving pressure ventilation, prone position, neuromuscular blocking agents and individualized ventilation based on transpulmonary pressure measurements have been demonstrated to successfully treat the vast majority of mechanically ventilated patients with severe hypoxemia. Veno-venous ECMO has a place in the small portion of severely hypoxemic patients in whom these strategies fail. A combined analysis of recent ARDS trials revealed that ECMO was used in only 2.15% of patients (n = 145/6736). Nevertheless, ECMO use has sharply increased in the last decade, raising questions regarding its thoughtful use. Such a policy could be harmful both for patients as well as for the ECMO technique itself. This narrative review attempts to describe together the practical approaches that can be offered to the sickest patients before going to ECMO, as well as the rationale and the limitations of ECMO. The benefit and the drawbacks associated with ECMO use along with a direct comparison with less invasive therapeutic strategies will be analyzed.

Критерии поиска